Customization: | Available |
---|---|
After-sales Service: | 24/7 After Sales Services |
Warranty: | 12 Months From Delivery |
Still deciding? Get samples of US$ 400/Piece
Order Sample
|
Shipping Cost: | Contact the supplier about freight and estimated delivery time. |
---|
Payment Methods: |
|
---|---|
Support payments in USD |
Secure payments: | Every payment you make on Made-in-China.com is protected by the platform. |
---|
Refund policy: | Claim a refund if your order doesn't ship, is missing, or arrives with product issues. |
---|
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
Product Overview
The ZZYS30 vortex flowmeter, an advanced velocity flow instrument, boasts a vast array of applications that cater to diverse needs.
Expertly designed to measure, monitor, and control the flow of liquids, steam, and an extensive variety of gases with unparalleled precision.
Featuring a groundbreaking structure, this flowmeter offers exceptional resistance to mechanical vibrations, impacts, and contaminants, ensuring longevity and durability.
Engineered with no moving parts, it promises no wear and tear, minimal maintenance, low pressure loss, stable performance, and remarkable accuracy.
Installation is a breeze, with the flexibility to pair the sensor and signal converter according to specific requirements.
Product features:
A versatile instrument, suitable for measuring the flow of steam, gas, and liquid across a wide range of applications.
Exceptional vibration resistance with zero drift at zero point, effectively neutralizing external vibrational impacts.
The ZZY30 model offers integrated temperature and pressure options, significantly reducing installation costs for users.
Provides multiple communication options including (0-5) kHz frequency output, (4-20) mA output, and HART/Modbus protocol communication.
Supports Bluetooth communication for convenient parameter setting. Its wear-resistant and dirt-resistant design ensures longevity and safety with explosion-proof features.
Technical Index
Measurement Medium: Gas, Liquid, Steam
Connection Method: Flange Clamp Type, Flange Type, Insertion Type
Caliber Specifications:
Flange Clamping Type: Available in 25, 32, 50, 80, 100 mm.
Flange Connection Type: Available in calibers 100, 150, 200 mm
Flow Measurement Range: Normal measurement flow velocity range: Reynolds number 1.5×104~4×106; Gas: 5~50 m/s; Liquid: 0.5~7 m/s.
Normal Measurement Flow Range: Liquid,
Gas Flow Measurement Range: See Table 2.
Steam Flow Range: See Table 3.
Measurement Accuracy: Available in 1.0 class, 1.5 class
Measured Medium Temperature:
Room Temperature: -25ºC~100ºC, High Temperature: -25ºC~150ºC, -25ºC~250ºC. Output Signal: Pulse voltage output signal, High level 8~10V, Low level 0.7~1.3V. Pulse duty cycle is about 50%, transmission distance is 100m.
Pulse Current Remote Transmission Signal: 4-20 mA, transmission distance is 1000m. Instrument Use Environment: Temperature: -25ºC~+55ºC, Humidity: 5~90% RH50ºC. Material: Stainless Steel, Aluminum Alloy
Power Supply: DC24V or Lithium Battery 3.6V
Explosion-Proof Grade: Intrinsically safe iaIIbT3-T6, Protection Level IP65.
Technical parameters | |
Medium | Steam, Gas, Liquid |
Measuring range | See flow1-3 |
Caliber | DN15, DN25, DN40, DN50, DN80, DN100, DN200, DN250, DN300 |
Medium pressure | ≤100 bar, more pressure need be customized |
Medium temperature | -40°C~+240°C |
Ambient temperature | Ordinary type: -40°C~+85°C Ex-proof type: -40°C~+60°C |
Accuracy | Liquid, Re≥20000 is ±1.0%, gas and steam, ±1.5% |
Repeatability | ±0.3% |
Material | Measuring pipe:304,316L, HC276 |
Sensor: 316L, HC276 | |
Converter shell: casting aluminum | |
Instrument caliber | Flange connection: DN15-DN300 |
Clamping connection: DN15-DN100 | |
Flange standard | DIN, ANSI, HG20592 (Can be customized) |
Pressure loss Gasandliquid saturated steam |
ΔP=Cqv²Px ΔP: pressure loss(pa) qv: volume flow qm: mass flow ΔP=Cqm²Px PX: density C: constent |
Display | Two-line LCD display, four button operation Instantaneous flow, accumulated flow, vortex frequency, medium temperature, pressure(selectable), circular or non-circular display |
Power supply | Ordinary type: (14~36) VDC Ex-proof type: (14~30) VDC Battery power supply |
Loading | No-ex-proof: RB=(UB-14DVC)/22MA≤1200Ω Ex-proof: RB=(UB-14DVC)/22MA≤600Ω |
Output | Two wire 4~20mA |
Ex-proof class | Exd II CT6 CE19.1438 Ex ( ia ) II CT6 |
Cable interface | 1/2''NPT( Internal thread, recommended), M201.5 (Internal thread) |
Housing protection class | IP67 |
Connection type | Flange (DN15-DN300), Clamping (DN15-DN100) |
Mounting type | Integral mounting, split mounting (special shielded cable connect the pipe and indicator) |
Gas | |||
Air: t=20°C p=1.013bar abs =1.7210-4 mpa.s Q: flow (sheet 1) | |||
Nominal diameter | Internal diameter | Qmin(m3/h) | Qmax(m3/h) |
DN15 | 16 | 6.79 | 32.56 |
DN25 | 24 | 10.20 | 113.94 |
DN40 | 38 | 25.3 | 326.63 |
DN50 | 50 | 43.89 | 565.49 |
DN80 | 74 | 96.14 | 1238.64 |
DN100 | 97 | 165.14 | 2128.27 |
DN150 | 146 | 374.23 | 4821.57 |
DN200 | 193 | 702.95 | 9056.8 |
DN250 | 253 | 1123.7 | 14478 |
DN300 | 305 | 1632.1 | 21028 |
Liquid | |||
Water: t=20°C p=1.013bar abs ≤10cp Q: flow | |||
Nominal diameter | Internal diameter | Qmin(m3/h) | Qmax(m3/h) |
DN15 | 16 | 0.45 | 5 |
DN25 | 24 | 0.81 | 11.40 |
DN40 | 38 | 2.04 | 28.57 |
DN50 | 50 | 3.53 | 49.47 |
DN80 | 74 | 7.74 | 108.37 |
DN100 | 97 | 13.30 | 186.21 |
DN150 | 146 | 30.13 | 421.86 |
DN200 | 193 | 52.66 | 792.42 |
DN250 | 253 | 90.5 | 1266.8 |
DN300 | 305 | 113.41 | 1839.8 |
Saturated steam | |||||||||
Nominal Diameter |
Inner Diameter |
Mass flow Qm (kg/h) under different pressure and density | |||||||
P=1bar G | P=3.5bar G | P=5.2bar G | P=7 bar G | ||||||
ρ=1.13kg/m3 | ρ=2.43kg/m3 | ρ=3.28kg/m3 | ρ=4.17kg/m3 | ||||||
t=120.6°C | t=148.2°C | t=160.4°C | t=170.6°C | ||||||
min | max | min | max | min | max | min | max | ||
DN15 | 16 | 5.87 | 36.97 | 7.68 | 79 | 8.93 | 106.68 | 10.06 | 135.69 |
DN25 | 24 | 11.82 | 129.39 | 17.26 | 276.4 | 20.09 | 373.53 | 22.66 | 474.82 |
DN40 | 38 | 29.64 | 370.71 | 43.33 | 792.33 | 50.63 | 1070.2 | 56.8 | 1361.2 |
DN50 | 50 | 51.31 | 641.82 | 75.02 | 1371.8 | 87.19 | 1852.8 | 98.33 | 2356.6 |
DN80 | 74 | 112.41 | 1405.8 | 164.33 | 3004.7 | 191 | 4058.4 | 215.39 | 5161.8 |
DN100 | 97 | 193.14 | 2415.5 | 282.36 | 5162.7 | 328.16 | 6973.3 | 370.09 | 8869.2 |
DN150 | 146 | 437.56 | 5472.4 | 639.69 | 11696 | 743.45 | 15798 | 838.44 | 20093 |
DN200 | 193 | 821.91 | 10279 | 1201.6 | 21970 | 1396.5 | 29675 | 1574.9 | 37743 |
DN250 | 253 | 1313.9 | 16433 | 1920.9 | 35122 | 2232.5 | 47439 | 2517.7 | 60337 |
DN300 | 305 | 1908.3 | 23866 | 2789.8 | 51010 | 3242.4 | 68899 | 3656.6 | 87630 |
Nominal Diameter |
Inner Diameter |
Mass flow Qm (kg/h) under different pressure and density | |||||||
P=10.5 bar G | P=14 bar G | P=17.5 bar G | P=20 bar G | ||||||
ρ=5.89kg/m3 | ρ=7.6kg/m3 | ρ=9.32kg/m3 | ρ=10.54kg/m3 | ||||||
t=186.2°C | t=198.5°C | t=208.5°C | t=215.6°C | ||||||
min | max | min | max | min | max | min | max | ||
DN15 | 16 | 12.78 | 191.71 | 16.51 | 247.55 | 20.23 | 303.36 | 22.89 | 343.32 |
DN25 | 24 | 26.93 | 670.88 | 30.6 | 857.88 | 33.87 | 955.48 | 36.04 | 1201.41 |
DN40 | 38 | 67.51 | 1878.2 | 76.72 | 2150.7 | 84.93 | 2395.3 | 90.35 | 2557.7 |
DN50 | 50 | 116.89 | 3251.7 | 132.82 | 3723.4 | 147.03 | 4147 | 156.42 | 4428.1 |
DN80 | 74 | 256.03 | 7122.4 | 290.93 | 8155.8 | 322.06 | 9083.7 | 342.62 | 9699.3 |
DN100 | 97 | 439.91 | 12238 | 499.9 | 14013 | 553.38 | 15608 | 588.69 | 16666 |
DN150 | 146 | 996.62 | 27725 | 1132.5 | 31747 | 1253.7 | 35359 | 1333.7 | 37756 |
DN200 | 193 | 1872.1 | 52079 | 2127.3 | 59634 | 2354.9 | 66419 | 2505.2 | 70921 |
DN250 | 253 | 2992.7 | 83254 | 3400.71 | 95333 | 3764.6 | 106180 | 4004.9 | 113380 |
DN300 | 305 | 4346.5 | 120920 | 4939.1 | 138460 | 5467.5 | 154210 | 5816.5 | 164660 |
Selection list | ||||||||
model | Explanation | |||||||
ZZY30 | ||||||||
Connection | F | Flange connection | ||||||
W | Flange clamping | |||||||
Temperature Resistance Class |
T1 | Match with 250°c probe | ||||||
T2 | Match with 350°c probe | |||||||
Nominal diameter |
015 | DN15 | ||||||
020 | DN20 | |||||||
025 | DN25 | |||||||
032 | DN32 | |||||||
040 | DN40 | |||||||
050 | DN50 | |||||||
065 | DN65 | |||||||
080 | DN80 | |||||||
100 | DN100 | |||||||
125 | DN125 | |||||||
150 | DN150 | |||||||
200 | DN200 | |||||||
250 | DN250 | |||||||
300 | DN300 | |||||||
Structure |
Z | Integrated T and P compensation | ||||||
F | Regular model | |||||||
S | Split | |||||||
Material | R1 | 304 | ||||||
RL | 316L | |||||||
Instrument model |
N | 24V power supply Output 3 wire pulse | ||||||
V1 | 24V power, on-site display, 4-20mA, RS485, Impulse output | |||||||
V1 B |
24V +battery power supply, on-site display, 4-20 mA, RS485, pulse output | |||||||
Pressure Class | N | Normal | ||||||
H | High pressure |
PACKING & SHIPPING: Ensuring Your Order Arrives Safely and Securely
We will deliver your ordered product at the earliest possible date as per your requirements, ensuring timely and efficient service.Installation Requirements
Piping Condition
The installation of the Liquid Vortex Flowmeter requires a certain straight pipe section before and after the sensor, with common scenarios as follows (D represents the diameter of the pipe):
Piping condition | upstream | Downstream |
Concentric shrinkage pipe full open gate valve |
15D | 5D |
∠90° square elbow | 20D | 5D |
Same plane 2∠90°elbow | 25D | 5D |
Semi-open gate valve regulating valve | 50D | 5D |
Different plane 2∠90°elbow | 40D | 5D |
With rectifier tube bundle | 12D | 5D |
1.
The sensor must be installed on a horizontal, vertical, or inclined pipe (with the liquid flowing from bottom to top) that matches the sensor's diameter. Ensure a sufficient length of straight pipe upstream (15-20D) and downstream (5-10D) from the sensor.
2.
The pipe near the liquid sensor should always be filled with the liquid being measured.
3.
Avoid installing the sensor on pipes that experience strong mechanical vibrations.
4.
The inner diameter of the straight pipe section should closely match the sensor diameter. If not identical, a slightly larger diameter pipe may be used, with a deviation of ≤3% and not exceeding 5mm. Do not install the sensor in areas with strong electromagnetic interference, limited space, or where maintenance would be challenging..
5.
Horizontal pipeline installation is the most prevalent for flow sensors. For gas flow containing a small amount of liquid, place the sensor at a high point in the pipeline. For liquid flow containing a small amount of gas, position the sensor at a low point in the pipeline.
6.
Vertical pipeline sensor installation. For gas flow, the sensor can be installed without restriction on flow direction. If the gas contains a small amount of liquid, the flow should be from bottom to top. For liquid flow, ensure the flow is from bottom to top to avoid additional load on the probe.
7.
Side installation on horizontal pipelines. Sensors can be side-mounted, especially for superheated steam, saturated steam, and low-temperature liquids. Side mounting is preferred when possible as it reduces the temperature impact on the amplifier.
8.
Inverted installation on horizontal pipelines is generally discouraged. It is unsuitable for measuring general gases or superheated steam but can be used for saturated steam and high-temperature liquids, particularly where frequent pipeline cleaning is required.
9.
For pipelines with insulation layers measuring high-temperature steam, ensure the insulation layer does not exceed one-third of the bracket height.
10.
Selecting pressure and temperature measurement points. Depending on measurement needs, position the pressure measurement point 3-5D downstream and the temperature measurement point 6-8D downstream of the sensor.