Customization: | Available |
---|---|
After-sales Service: | 24/7 After Sales Services |
Warranty: | 12 Months From Delivery |
Still deciding? Get samples of US$ 400/Piece
Order Sample
|
Shipping Cost: | Contact the supplier about freight and estimated delivery time. |
---|
Payment Methods: |
|
---|---|
Support payments in USD |
Secure payments: | Every payment you make on Made-in-China.com is protected by the platform. |
---|
Refund policy: | Claim a refund if your order doesn't ship, is missing, or arrives with product issues. |
---|
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
Product Overview
The innovative ZZYS30 vortex flowmeter is a sophisticated velocity flow instrument, renowned for its versatility across various applications.
Perfectly designed for measuring, monitoring, and controlling the flow of liquids, steam, and an array of gases.
Featuring a pioneering new structure, it boasts exceptional resistance to mechanical vibrations, impacts, and contamination.
Engineered with precision, it has no moving parts, ensuring no wear and tear, maintenance-free operation, minimal pressure loss, consistent performance, and remarkable accuracy.
Effortless installation, with customizable sensor and signal converter matching to meet your specific needs.
Product features:
Versatile application range, adept at measuring the flow of steam, gas, and liquid with unparalleled precision.
Outstanding vibration performance with zero drift at zero point, effectively neutralizing external vibration effects.
The ZZY30 model offers integrated temperature and pressure product options, significantly reducing installation costs for the user.
Provides (0-5) kHz frequency output, (4-20) mA output, and supports HART communication or Modbus protocol communication for seamless integration.
Includes Bluetooth communication for convenient parameter setting. Built to be wear-resistant and dirt-resistant, it requires no mechanical maintenance, offers a long service life, and is explosion-proof for enhanced safety.
Technical Index
Measurement Medium: Gas, Liquid, Steam
Connection Method: Flange Clamp Type, Flange Type, Insertion Type
Caliber Specifications:
Flange Clamping Type: 25, 32, 50, 80, 100mm
Flange Connection Type Caliber Selection: 100, 150, 200mm
Flow Measurement Range: Normal Measurement Flow Velocity Range: Reynolds Number 1.5×104~4×106; Gas: 5~50m/s; Liquid: 0.5~7m/s
Normal Measurement Flow Range: Liquid,
Gas Flow Measurement Range: See Table 2.
Steam Flow Range: See Table 3.
Measurement Accuracy: Class 1.0, Class 1.5
Measured Medium Temperature:
Room Temperature: -25ºC to 100ºC; High Temperature: -25ºC to 150ºC, -25ºC to 250ºC Output Signal: Pulse Voltage Output Signal, High Level: 8~10V, Low Level: 0.7~1.3V Pulse Duty Cycle: Approx. 50%, Transmission Distance: 100m
Pulse Current Remote Transmission Signal: 4-20mA, Transmission Distance: 1000m Instrument Use Environment: Temperature: -25ºC to +55ºC; Humidity: 5%~90% RH50ºC Material: Stainless Steel, Aluminum Alloy
Power Supply: DC 24V or Lithium Battery 3.6V
Explosion-Proof Grade: Intrinsically Safe iaIIbT3-T6, Protection Level: IP65
Technical parameters | |
Medium | Steam, Gas, Liquid |
Measuring range | See flow1-3 |
Caliber | DN15, DN25, DN40, DN50, DN80, DN100, DN200, DN250, DN300 |
Medium pressure | ≤100 bar, more pressure need be customized |
Medium temperature | -40°C~+240°C |
Ambient temperature | Ordinary type: -40°C~+85°C Ex-proof type: -40°C~+60°C |
Accuracy | Liquid, Re≥20000 is ±1.0%, gas and steam, ±1.5% |
Repeatability | ±0.3% |
Material | Measuring pipe:304,316L, HC276 |
Sensor: 316L, HC276 | |
Converter shell: casting aluminum | |
Instrument caliber | Flange connection: DN15-DN300 |
Clamping connection: DN15-DN100 | |
Flange standard | DIN, ANSI, HG20592 (Can be customized) |
Pressure loss Gasandliquid saturated steam |
ΔP=Cqv²Px ΔP: pressure loss(pa) qv: volume flow qm: mass flow ΔP=Cqm²Px PX: density C: constent |
Display | Two-line LCD display, four button operation Instantaneous flow, accumulated flow, vortex frequency, medium temperature, pressure(selectable), circular or non-circular display |
Power supply | Ordinary type: (14~36) VDC Ex-proof type: (14~30) VDC Battery power supply |
Loading | No-ex-proof: RB=(UB-14DVC)/22MA≤1200Ω Ex-proof: RB=(UB-14DVC)/22MA≤600Ω |
Output | Two wire 4~20mA |
Ex-proof class | Exd II CT6 CE19.1438 Ex ( ia ) II CT6 |
Cable interface | 1/2''NPT( Internal thread, recommended), M201.5 (Internal thread) |
Housing protection class | IP67 |
Connection type | Flange (DN15-DN300), Clamping (DN15-DN100) |
Mounting type | Integral mounting, split mounting (special shielded cable connect the pipe and indicator) |
Gas | |||
Air: t=20°C p=1.013bar abs =1.7210-4 mpa.s Q: flow (sheet 1) | |||
Nominal diameter | Internal diameter | Qmin(m3/h) | Qmax(m3/h) |
DN15 | 16 | 6.79 | 32.56 |
DN25 | 24 | 10.20 | 113.94 |
DN40 | 38 | 25.3 | 326.63 |
DN50 | 50 | 43.89 | 565.49 |
DN80 | 74 | 96.14 | 1238.64 |
DN100 | 97 | 165.14 | 2128.27 |
DN150 | 146 | 374.23 | 4821.57 |
DN200 | 193 | 702.95 | 9056.8 |
DN250 | 253 | 1123.7 | 14478 |
DN300 | 305 | 1632.1 | 21028 |
Liquid | |||
Water: t=20°C p=1.013bar abs ≤10cp Q: flow | |||
Nominal diameter | Internal diameter | Qmin(m3/h) | Qmax(m3/h) |
DN15 | 16 | 0.45 | 5 |
DN25 | 24 | 0.81 | 11.40 |
DN40 | 38 | 2.04 | 28.57 |
DN50 | 50 | 3.53 | 49.47 |
DN80 | 74 | 7.74 | 108.37 |
DN100 | 97 | 13.30 | 186.21 |
DN150 | 146 | 30.13 | 421.86 |
DN200 | 193 | 52.66 | 792.42 |
DN250 | 253 | 90.5 | 1266.8 |
DN300 | 305 | 113.41 | 1839.8 |
Saturated steam | |||||||||
Nominal Diameter |
Inner Diameter |
Mass flow Qm (kg/h) under different pressure and density | |||||||
P=1bar G | P=3.5bar G | P=5.2bar G | P=7 bar G | ||||||
ρ=1.13kg/m3 | ρ=2.43kg/m3 | ρ=3.28kg/m3 | ρ=4.17kg/m3 | ||||||
t=120.6°C | t=148.2°C | t=160.4°C | t=170.6°C | ||||||
min | max | min | max | min | max | min | max | ||
DN15 | 16 | 5.87 | 36.97 | 7.68 | 79 | 8.93 | 106.68 | 10.06 | 135.69 |
DN25 | 24 | 11.82 | 129.39 | 17.26 | 276.4 | 20.09 | 373.53 | 22.66 | 474.82 |
DN40 | 38 | 29.64 | 370.71 | 43.33 | 792.33 | 50.63 | 1070.2 | 56.8 | 1361.2 |
DN50 | 50 | 51.31 | 641.82 | 75.02 | 1371.8 | 87.19 | 1852.8 | 98.33 | 2356.6 |
DN80 | 74 | 112.41 | 1405.8 | 164.33 | 3004.7 | 191 | 4058.4 | 215.39 | 5161.8 |
DN100 | 97 | 193.14 | 2415.5 | 282.36 | 5162.7 | 328.16 | 6973.3 | 370.09 | 8869.2 |
DN150 | 146 | 437.56 | 5472.4 | 639.69 | 11696 | 743.45 | 15798 | 838.44 | 20093 |
DN200 | 193 | 821.91 | 10279 | 1201.6 | 21970 | 1396.5 | 29675 | 1574.9 | 37743 |
DN250 | 253 | 1313.9 | 16433 | 1920.9 | 35122 | 2232.5 | 47439 | 2517.7 | 60337 |
DN300 | 305 | 1908.3 | 23866 | 2789.8 | 51010 | 3242.4 | 68899 | 3656.6 | 87630 |
Nominal Diameter |
Inner Diameter |
Mass flow Qm (kg/h) under different pressure and density | |||||||
P=10.5 bar G | P=14 bar G | P=17.5 bar G | P=20 bar G | ||||||
ρ=5.89kg/m3 | ρ=7.6kg/m3 | ρ=9.32kg/m3 | ρ=10.54kg/m3 | ||||||
t=186.2°C | t=198.5°C | t=208.5°C | t=215.6°C | ||||||
min | max | min | max | min | max | min | max | ||
DN15 | 16 | 12.78 | 191.71 | 16.51 | 247.55 | 20.23 | 303.36 | 22.89 | 343.32 |
DN25 | 24 | 26.93 | 670.88 | 30.6 | 857.88 | 33.87 | 955.48 | 36.04 | 1201.41 |
DN40 | 38 | 67.51 | 1878.2 | 76.72 | 2150.7 | 84.93 | 2395.3 | 90.35 | 2557.7 |
DN50 | 50 | 116.89 | 3251.7 | 132.82 | 3723.4 | 147.03 | 4147 | 156.42 | 4428.1 |
DN80 | 74 | 256.03 | 7122.4 | 290.93 | 8155.8 | 322.06 | 9083.7 | 342.62 | 9699.3 |
DN100 | 97 | 439.91 | 12238 | 499.9 | 14013 | 553.38 | 15608 | 588.69 | 16666 |
DN150 | 146 | 996.62 | 27725 | 1132.5 | 31747 | 1253.7 | 35359 | 1333.7 | 37756 |
DN200 | 193 | 1872.1 | 52079 | 2127.3 | 59634 | 2354.9 | 66419 | 2505.2 | 70921 |
DN250 | 253 | 2992.7 | 83254 | 3400.71 | 95333 | 3764.6 | 106180 | 4004.9 | 113380 |
DN300 | 305 | 4346.5 | 120920 | 4939.1 | 138460 | 5467.5 | 154210 | 5816.5 | 164660 |
Selection list | ||||||||
model | Explanation | |||||||
ZZY30 | ||||||||
Connection | F | Flange connection | ||||||
W | Flange clamping | |||||||
Temperature Resistance Class |
T1 | Match with 250°c probe | ||||||
T2 | Match with 350°c probe | |||||||
Nominal diameter |
015 | DN15 | ||||||
020 | DN20 | |||||||
025 | DN25 | |||||||
032 | DN32 | |||||||
040 | DN40 | |||||||
050 | DN50 | |||||||
065 | DN65 | |||||||
080 | DN80 | |||||||
100 | DN100 | |||||||
125 | DN125 | |||||||
150 | DN150 | |||||||
200 | DN200 | |||||||
250 | DN250 | |||||||
300 | DN300 | |||||||
Structure |
Z | Integrated T and P compensation | ||||||
F | Regular model | |||||||
S | Split | |||||||
Material | R1 | 304 | ||||||
RL | 316L | |||||||
Instrument model |
N | 24V power supply Output 3 wire pulse | ||||||
V1 | 24V power, on-site display, 4-20mA, RS485, Impulse output | |||||||
V1 B |
24V +battery power supply, on-site display, 4-20 mA, RS485, pulse output | |||||||
Pressure Class | N | Normal | ||||||
H | High pressure |
PACKING & SHIPPING
We will ensure the prompt delivery of your product order, adhering to the earliest possible date as per your requirements.Installation Requirements
Piping Condition
The installation of the vortex flowmeter necessitates a specific length of straight pipe sections both upstream and downstream. Common scenarios are as follows (D denotes the diameter of the pipe):
Piping condition | upstream | Downstream |
Concentric shrinkage pipe full open gate valve |
15D | 5D |
∠90° square elbow | 20D | 5D |
Same plane 2∠90°elbow | 25D | 5D |
Semi-open gate valve regulating valve | 50D | 5D |
Different plane 2∠90°elbow | 40D | 5D |
With rectifier tube bundle | 12D | 5D |
1.
The sensor should be installed on a horizontal, vertical, or inclined pipe (with the liquid flowing from bottom to top) that matches the sensor's diameter. Ensure straight pipe sections of 15-20D upstream and 5-10D downstream for optimal performance.
2.
The pipe near the liquid sensor must be fully filled with the measured liquid.
3.
Avoid installing the sensor on pipes experiencing strong mechanical vibrations.
4.
The inner diameter of the straight pipe should closely match the sensor diameter. If not feasible, opt for a slightly larger pipe with ≤3% error, not exceeding 5mm. Avoid installing the sensor in areas with strong electromagnetic interference, restricted space, or where maintenance is inconvenient..
5.
For horizontal pipeline installations, the most common method for flow sensors, ensure the sensor is at a higher point if the gas contains liquid and at a lower point if the liquid contains gas.
6.
For vertical pipelines, install the sensor without flow direction restrictions for gas flow. If the gas contains liquid, flow should be from bottom to top. For liquid flow, ensure it flows from bottom to top to prevent additional weight on the probe.
7.
Side installation on horizontal pipelines is ideal for superheated steam, saturated steam, and low-temperature liquids. This method minimizes the temperature impact on the amplifier, making it the preferred choice if conditions allow.
8.
Inverted installation on horizontal pipelines is generally discouraged for general gases or superheated steam but is suitable for saturated steam, high-temperature liquids, or pipelines needing frequent cleaning.
9.
For pipelines with insulation layers, particularly when measuring high-temperature steam, ensure the insulation does not exceed one-third of the bracket height.
10.
For pressure and temperature measurements near the sensor, place the pressure measurement point 3-5D downstream and the temperature measurement point 6-8D downstream, as per the measurement requirements.