Customization: | Available |
---|---|
After-sales Service: | 24/7 After Sales Services |
Warranty: | 12 Months From Delivery |
Still deciding? Get samples of US$ 400/Piece
Order Sample
|
Shipping Cost: | Contact the supplier about freight and estimated delivery time. |
---|
Payment Methods: |
|
---|---|
Support payments in USD |
Secure payments: | Every payment you make on Made-in-China.com is protected by the platform. |
---|
Refund policy: | Claim a refund if your order doesn't ship, is missing, or arrives with product issues. |
---|
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
Product Overview
The ZZYS30 Vortex Flowmeter is an advanced velocity flow instrument designed for a wide spectrum of applications.
Ideal for measuring, monitoring, and controlling the flow of liquids, steam, and various gases with utmost precision.
Boasting a novel structure, the flowmeter is engineered to withstand mechanical vibrations, impacts, and contamination.
Free from moving parts, it ensures no wear and tear, eliminating the need for mechanical maintenance. It offers low pressure loss, stable performance, and high accuracy.
This user-friendly device is easy to install, with customizable sensor and signal converter options to meet specific needs.
Product Features:
Wide application range, capable of accurately measuring the flow of steam, gas, and liquid.
Exceptional vibration performance, zero drift at zero point, effectively minimizing the impact of external vibrations.
The ZZY30 offers integrated temperature and pressure options, providing cost-effective installation for users.
Supports (0-5) kHz frequency output, (4-20) mA output, HART communication, or Modbus protocol communication.
Enables parameter setting via Bluetooth communication. Durable, dirt-resistant, requires no mechanical maintenance, ensuring a long service life and explosion-proof safety.
Technical Index
Measurement Medium: Gas, Liquid, Steam
Connection Method: Flange Clamp Type, Flange Type, Insertion Type
Caliber Specifications:
Flange Clamping Type: Sizes 25, 32, 50, 80, 100
Flange Connection Type: Available Caliber Options 100, 150, 200
Flow Measurement Range: Normal Measurement Flow Velocity Range Reynolds Number 1.5×104~4×106; Gas: 5~50m/s; Liquid: 0.5~7m/s
Normal Measurement Flow Range: Liquid,
Gas Flow Measurement Range: See Table 2
Steam Flow Range: See Table 3
Measurement Accuracy: 1.0 Class, 1.5 Class
Measured Medium Temperature:
Room Temperature: -25ºC~100ºC, High Temperature: -25ºC~150ºC, -25ºC~250ºC Output Signal: Pulse Voltage Output Signal, High Level: 8~10V, Low Level: 0.7~1.3V. Pulse Duty Cycle: ~50%, Transmission Distance: 100m
Pulse Current Remote Transmission Signal: 4-20 mA, Transmission Distance: 1000m. Instrument Use Environment: Temperature: -25ºC~+55ºC, Humidity: 5~90% RH50ºC Material: Stainless Steel, Aluminum Alloy
Power Supply: DC24V or Lithium Battery 3.6V
Explosion-Proof Grade: Intrinsically Safe iaIIbT3-T6, Protection Level IP65
Technical parameters | |
Medium | Steam, Gas, Liquid |
Measuring range | See flow1-3 |
Caliber | DN15, DN25, DN40, DN50, DN80, DN100, DN200, DN250, DN300 |
Medium pressure | ≤100 bar, more pressure need be customized |
Medium temperature | -40°C~+240°C |
Ambient temperature | Ordinary type: -40°C~+85°C Ex-proof type: -40°C~+60°C |
Accuracy | Liquid, Re≥20000 is ±1.0%, gas and steam, ±1.5% |
Repeatability | ±0.3% |
Material | Measuring pipe:304,316L, HC276 |
Sensor: 316L, HC276 | |
Converter shell: casting aluminum | |
Instrument caliber | Flange connection: DN15-DN300 |
Clamping connection: DN15-DN100 | |
Flange standard | DIN, ANSI, HG20592 (Can be customized) |
Pressure loss Gasandliquid saturated steam |
ΔP=Cqv²Px ΔP: pressure loss(pa) qv: volume flow qm: mass flow ΔP=Cqm²Px PX: density C: constent |
Display | Two-line LCD display, four button operation Instantaneous flow, accumulated flow, vortex frequency, medium temperature, pressure(selectable), circular or non-circular display |
Power supply | Ordinary type: (14~36) VDC Ex-proof type: (14~30) VDC Battery power supply |
Loading | No-ex-proof: RB=(UB-14DVC)/22MA≤1200Ω Ex-proof: RB=(UB-14DVC)/22MA≤600Ω |
Output | Two wire 4~20mA |
Ex-proof class | Exd II CT6 CE19.1438 Ex ( ia ) II CT6 |
Cable interface | 1/2''NPT( Internal thread, recommended), M201.5 (Internal thread) |
Housing protection class | IP67 |
Connection type | Flange (DN15-DN300), Clamping (DN15-DN100) |
Mounting type | Integral mounting, split mounting (special shielded cable connect the pipe and indicator) |
Gas | |||
Air: t=20°C p=1.013bar abs =1.7210-4 mpa.s Q: flow (sheet 1) | |||
Nominal diameter | Internal diameter | Qmin(m3/h) | Qmax(m3/h) |
DN15 | 16 | 6.79 | 32.56 |
DN25 | 24 | 10.20 | 113.94 |
DN40 | 38 | 25.3 | 326.63 |
DN50 | 50 | 43.89 | 565.49 |
DN80 | 74 | 96.14 | 1238.64 |
DN100 | 97 | 165.14 | 2128.27 |
DN150 | 146 | 374.23 | 4821.57 |
DN200 | 193 | 702.95 | 9056.8 |
DN250 | 253 | 1123.7 | 14478 |
DN300 | 305 | 1632.1 | 21028 |
Liquid | |||
Water: t=20°C p=1.013bar abs ≤10cp Q: flow | |||
Nominal diameter | Internal diameter | Qmin(m3/h) | Qmax(m3/h) |
DN15 | 16 | 0.45 | 5 |
DN25 | 24 | 0.81 | 11.40 |
DN40 | 38 | 2.04 | 28.57 |
DN50 | 50 | 3.53 | 49.47 |
DN80 | 74 | 7.74 | 108.37 |
DN100 | 97 | 13.30 | 186.21 |
DN150 | 146 | 30.13 | 421.86 |
DN200 | 193 | 52.66 | 792.42 |
DN250 | 253 | 90.5 | 1266.8 |
DN300 | 305 | 113.41 | 1839.8 |
Saturated steam | |||||||||
Nominal Diameter |
Inner Diameter |
Mass flow Qm (kg/h) under different pressure and density | |||||||
P=1bar G | P=3.5bar G | P=5.2bar G | P=7 bar G | ||||||
ρ=1.13kg/m3 | ρ=2.43kg/m3 | ρ=3.28kg/m3 | ρ=4.17kg/m3 | ||||||
t=120.6°C | t=148.2°C | t=160.4°C | t=170.6°C | ||||||
min | max | min | max | min | max | min | max | ||
DN15 | 16 | 5.87 | 36.97 | 7.68 | 79 | 8.93 | 106.68 | 10.06 | 135.69 |
DN25 | 24 | 11.82 | 129.39 | 17.26 | 276.4 | 20.09 | 373.53 | 22.66 | 474.82 |
DN40 | 38 | 29.64 | 370.71 | 43.33 | 792.33 | 50.63 | 1070.2 | 56.8 | 1361.2 |
DN50 | 50 | 51.31 | 641.82 | 75.02 | 1371.8 | 87.19 | 1852.8 | 98.33 | 2356.6 |
DN80 | 74 | 112.41 | 1405.8 | 164.33 | 3004.7 | 191 | 4058.4 | 215.39 | 5161.8 |
DN100 | 97 | 193.14 | 2415.5 | 282.36 | 5162.7 | 328.16 | 6973.3 | 370.09 | 8869.2 |
DN150 | 146 | 437.56 | 5472.4 | 639.69 | 11696 | 743.45 | 15798 | 838.44 | 20093 |
DN200 | 193 | 821.91 | 10279 | 1201.6 | 21970 | 1396.5 | 29675 | 1574.9 | 37743 |
DN250 | 253 | 1313.9 | 16433 | 1920.9 | 35122 | 2232.5 | 47439 | 2517.7 | 60337 |
DN300 | 305 | 1908.3 | 23866 | 2789.8 | 51010 | 3242.4 | 68899 | 3656.6 | 87630 |
Nominal Diameter |
Inner Diameter |
Mass flow Qm (kg/h) under different pressure and density | |||||||
P=10.5 bar G | P=14 bar G | P=17.5 bar G | P=20 bar G | ||||||
ρ=5.89kg/m3 | ρ=7.6kg/m3 | ρ=9.32kg/m3 | ρ=10.54kg/m3 | ||||||
t=186.2°C | t=198.5°C | t=208.5°C | t=215.6°C | ||||||
min | max | min | max | min | max | min | max | ||
DN15 | 16 | 12.78 | 191.71 | 16.51 | 247.55 | 20.23 | 303.36 | 22.89 | 343.32 |
DN25 | 24 | 26.93 | 670.88 | 30.6 | 857.88 | 33.87 | 955.48 | 36.04 | 1201.41 |
DN40 | 38 | 67.51 | 1878.2 | 76.72 | 2150.7 | 84.93 | 2395.3 | 90.35 | 2557.7 |
DN50 | 50 | 116.89 | 3251.7 | 132.82 | 3723.4 | 147.03 | 4147 | 156.42 | 4428.1 |
DN80 | 74 | 256.03 | 7122.4 | 290.93 | 8155.8 | 322.06 | 9083.7 | 342.62 | 9699.3 |
DN100 | 97 | 439.91 | 12238 | 499.9 | 14013 | 553.38 | 15608 | 588.69 | 16666 |
DN150 | 146 | 996.62 | 27725 | 1132.5 | 31747 | 1253.7 | 35359 | 1333.7 | 37756 |
DN200 | 193 | 1872.1 | 52079 | 2127.3 | 59634 | 2354.9 | 66419 | 2505.2 | 70921 |
DN250 | 253 | 2992.7 | 83254 | 3400.71 | 95333 | 3764.6 | 106180 | 4004.9 | 113380 |
DN300 | 305 | 4346.5 | 120920 | 4939.1 | 138460 | 5467.5 | 154210 | 5816.5 | 164660 |
Selection list | ||||||||
model | Explanation | |||||||
ZZY30 | ||||||||
Connection | F | Flange connection | ||||||
W | Flange clamping | |||||||
Temperature Resistance Class |
T1 | Match with 250°c probe | ||||||
T2 | Match with 350°c probe | |||||||
Nominal diameter |
015 | DN15 | ||||||
020 | DN20 | |||||||
025 | DN25 | |||||||
032 | DN32 | |||||||
040 | DN40 | |||||||
050 | DN50 | |||||||
065 | DN65 | |||||||
080 | DN80 | |||||||
100 | DN100 | |||||||
125 | DN125 | |||||||
150 | DN150 | |||||||
200 | DN200 | |||||||
250 | DN250 | |||||||
300 | DN300 | |||||||
Structure |
Z | Integrated T and P compensation | ||||||
F | Regular model | |||||||
S | Split | |||||||
Material | R1 | 304 | ||||||
RL | 316L | |||||||
Instrument model |
N | 24V power supply Output 3 wire pulse | ||||||
V1 | 24V power, on-site display, 4-20mA, RS485, Impulse output | |||||||
V1 B |
24V +battery power supply, on-site display, 4-20 mA, RS485, pulse output | |||||||
Pressure Class | N | Normal | ||||||
H | High pressure |
PACKING & SHIPPING
We will deliver your order at the earliest date as per your requirements, ensuring prompt and efficient service.Installation Requirements
Piping Condition
The installation of the Anti Vibration Liquid Vortex Flowmeter demands specific straight pipe sections before and after the sensor to ensure optimal performance. The typical requirements are as follows (D is the diameter of the pipe):
Piping condition | upstream | Downstream |
Concentric shrinkage pipe full open gate valve |
15D | 5D |
∠90° square elbow | 20D | 5D |
Same plane 2∠90°elbow | 25D | 5D |
Semi-open gate valve regulating valve | 50D | 5D |
Different plane 2∠90°elbow | 40D | 5D |
With rectifier tube bundle | 12D | 5D |
1.
Ensure the sensor is mounted on a pipe that is horizontal, vertical, or inclined (flowing from bottom to top) and maintains the same diameter as the sensor. An adequate straight length of pipe is crucial, with 15-20D upstream and 5-10D downstream.
2.
The pipeline near the liquid sensor must be fully filled with the liquid to be measured.
3.
Avoid installing the sensor on pipes subject to strong mechanical vibrations.
4.
The inner diameter of the straight pipe should closely match the sensor's diameter. If a mismatch occurs, opt for a slightly larger pipe, keeping the discrepancy within ≤3% and not exceeding 5mm. Avoid installation in areas with strong electromagnetic interference, confined spaces, or where maintenance is challenging..
5.
Horizontal pipeline installation is the most prevalent for flow sensors. For gas flow with minor liquid content, install the sensor at the pipeline's highest point. For liquid flow with minor gas content, position the sensor at the lowest point.
6.
Vertical pipeline sensor installation: For gas flow, the sensor can be mounted without flow direction constraints. If minor liquid content is present, the flow should be bottom-to-top. For liquid flow, ensure a bottom-to-top direction to minimize probe weight.
7.
Side-mounting sensors on horizontal pipelines is beneficial for all fluid types, especially superheated steam, saturated steam, and low-temperature liquids. Side mounting is preferred when possible to reduce temperature effects on the amplifier.
8.
Inverted sensor installation on horizontal pipelines is generally discouraged. It is unsuitable for general gases or superheated steam but can be used for saturated steam and high-temperature liquids, or where frequent cleaning is required.
9.
When installing sensors on pipelines with insulation layers, for high-temperature steam, ensure the insulation does not exceed one-third of the bracket height.
10.
Selecting pressure and temperature measurement points: For accurate measurements, place the pressure point 3-5D downstream of the sensor, and the temperature point 6-8D downstream.