Customization: | Available |
---|---|
After-sales Service: | 24/7 After Sales Services |
Warranty: | 12 Months From Delivery |
Still deciding? Get samples of US$ 400/Piece
Order Sample
|
Shipping Cost: | Contact the supplier about freight and estimated delivery time. |
---|
Payment Methods: |
|
---|---|
Support payments in USD |
Secure payments: | Every payment you make on Made-in-China.com is protected by the platform. |
---|
Refund policy: | Claim a refund if your order doesn't ship, is missing, or arrives with product issues. |
---|
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
Product Overview
The ZZYS30 vortex flowmeter is an advanced velocity flow instrument engineered for versatile applications.
Perfect for measuring, monitoring, and controlling the flow of liquids, steam, and a variety of gases.
Designed with a robust structure that withstands mechanical vibrations, impacts, and contamination.
Featuring no moving parts, it eliminates wear and tear, requiring no mechanical maintenance. Enjoy low pressure loss, stable performance, and exceptional accuracy.
Installation is a breeze, and the sensor and signal converter can be effortlessly paired to meet your specific needs.
Product Features:
Expansive application range, ideal for steam, gas, and liquid flow measurement.
Superior vibration performance with zero drift at the zero point, effectively neutralizing external vibrations.
ZZY30 provides integrated temperature and pressure options, reducing installation costs significantly for users.
Offers (0-5) kHz frequency output, (4-20) mA output, or HART communication/Modbus protocol communication.
Supports Bluetooth communication for parameter setting. Durability meets convenience with wear-resistant, dirt-resistant features, ensuring long service life and explosion-proof safety.
Technical Index
Measurement Medium: Gas, liquid, steam
Connection Method: Flange clamp type, flange type, insertion type
Caliber Specifications:
Flange Clamping Type: 25, 32, 50, 80, 100.
Flange Connection Type Caliber Selection: 100, 150, 200
Flow Measurement Range: Normal measurement flow velocity range Reynolds number 1.5×104~4×106; gas 5~50m/s; liquid 0.5~7m/s.
Normal Measurement Flow Range: Liquid,
Gas Flow Measurement Range: See Table 2.
Steam Flow Range: See Table 3.
Measurement Accuracy: 1.0 class, 1.5 class
Measured Medium Temperature:
Room temperature -25ºC~100ºC, high temperature -25ºC~150ºC, -25ºC~250ºC Output Signal: Pulse voltage output signal, High level 8~10V, Low level 0.7~1.3V Pulse duty cycle is about 50%, transmission distance is 100m
Pulse Current Remote Transmission Signal: 4-20 mA, transmission distance is 1000m Instrument Use Environment: Temperature -25ºC~+55ºC, Humidity 5~90% RH50ºC Material: Stainless steel, aluminum alloy
Power Supply: DC24V or lithium battery 3.6V
Explosion-Proof Grade: Intrinsically safe iaIIbT3-T6, Protection Level IP65.
Technical parameters | |
Medium | Steam, Gas, Liquid |
Measuring range | See flow1-3 |
Caliber | DN15, DN25, DN40, DN50, DN80, DN100, DN200, DN250, DN300 |
Medium pressure | ≤100 bar, more pressure need be customized |
Medium temperature | -40°C~+240°C |
Ambient temperature | Ordinary type: -40°C~+85°C Ex-proof type: -40°C~+60°C |
Accuracy | Liquid, Re≥20000 is ±1.0%, gas and steam, ±1.5% |
Repeatability | ±0.3% |
Material | Measuring pipe:304,316L, HC276 |
Sensor: 316L, HC276 | |
Converter shell: casting aluminum | |
Instrument caliber | Flange connection: DN15-DN300 |
Clamping connection: DN15-DN100 | |
Flange standard | DIN, ANSI, HG20592 (Can be customized) |
Pressure loss Gasandliquid saturated steam |
ΔP=Cqv²Px ΔP: pressure loss(pa) qv: volume flow qm: mass flow ΔP=Cqm²Px PX: density C: constent |
Display | Two-line LCD display, four button operation Instantaneous flow, accumulated flow, vortex frequency, medium temperature, pressure(selectable), circular or non-circular display |
Power supply | Ordinary type: (14~36) VDC Ex-proof type: (14~30) VDC Battery power supply |
Loading | No-ex-proof: RB=(UB-14DVC)/22MA≤1200Ω Ex-proof: RB=(UB-14DVC)/22MA≤600Ω |
Output | Two wire 4~20mA |
Ex-proof class | Exd II CT6 CE19.1438 Ex ( ia ) II CT6 |
Cable interface | 1/2''NPT( Internal thread, recommended), M201.5 (Internal thread) |
Housing protection class | IP67 |
Connection type | Flange (DN15-DN300), Clamping (DN15-DN100) |
Mounting type | Integral mounting, split mounting (special shielded cable connect the pipe and indicator) |
Gas | |||
Air: t=20°C p=1.013bar abs =1.7210-4 mpa.s Q: flow (sheet 1) | |||
Nominal diameter | Internal diameter | Qmin(m3/h) | Qmax(m3/h) |
DN15 | 16 | 6.79 | 32.56 |
DN25 | 24 | 10.20 | 113.94 |
DN40 | 38 | 25.3 | 326.63 |
DN50 | 50 | 43.89 | 565.49 |
DN80 | 74 | 96.14 | 1238.64 |
DN100 | 97 | 165.14 | 2128.27 |
DN150 | 146 | 374.23 | 4821.57 |
DN200 | 193 | 702.95 | 9056.8 |
DN250 | 253 | 1123.7 | 14478 |
DN300 | 305 | 1632.1 | 21028 |
Liquid | |||
Water: t=20°C p=1.013bar abs ≤10cp Q: flow | |||
Nominal diameter | Internal diameter | Qmin(m3/h) | Qmax(m3/h) |
DN15 | 16 | 0.45 | 5 |
DN25 | 24 | 0.81 | 11.40 |
DN40 | 38 | 2.04 | 28.57 |
DN50 | 50 | 3.53 | 49.47 |
DN80 | 74 | 7.74 | 108.37 |
DN100 | 97 | 13.30 | 186.21 |
DN150 | 146 | 30.13 | 421.86 |
DN200 | 193 | 52.66 | 792.42 |
DN250 | 253 | 90.5 | 1266.8 |
DN300 | 305 | 113.41 | 1839.8 |
Saturated steam | |||||||||
Nominal Diameter |
Inner Diameter |
Mass flow Qm (kg/h) under different pressure and density | |||||||
P=1bar G | P=3.5bar G | P=5.2bar G | P=7 bar G | ||||||
ρ=1.13kg/m3 | ρ=2.43kg/m3 | ρ=3.28kg/m3 | ρ=4.17kg/m3 | ||||||
t=120.6°C | t=148.2°C | t=160.4°C | t=170.6°C | ||||||
min | max | min | max | min | max | min | max | ||
DN15 | 16 | 5.87 | 36.97 | 7.68 | 79 | 8.93 | 106.68 | 10.06 | 135.69 |
DN25 | 24 | 11.82 | 129.39 | 17.26 | 276.4 | 20.09 | 373.53 | 22.66 | 474.82 |
DN40 | 38 | 29.64 | 370.71 | 43.33 | 792.33 | 50.63 | 1070.2 | 56.8 | 1361.2 |
DN50 | 50 | 51.31 | 641.82 | 75.02 | 1371.8 | 87.19 | 1852.8 | 98.33 | 2356.6 |
DN80 | 74 | 112.41 | 1405.8 | 164.33 | 3004.7 | 191 | 4058.4 | 215.39 | 5161.8 |
DN100 | 97 | 193.14 | 2415.5 | 282.36 | 5162.7 | 328.16 | 6973.3 | 370.09 | 8869.2 |
DN150 | 146 | 437.56 | 5472.4 | 639.69 | 11696 | 743.45 | 15798 | 838.44 | 20093 |
DN200 | 193 | 821.91 | 10279 | 1201.6 | 21970 | 1396.5 | 29675 | 1574.9 | 37743 |
DN250 | 253 | 1313.9 | 16433 | 1920.9 | 35122 | 2232.5 | 47439 | 2517.7 | 60337 |
DN300 | 305 | 1908.3 | 23866 | 2789.8 | 51010 | 3242.4 | 68899 | 3656.6 | 87630 |
Nominal Diameter |
Inner Diameter |
Mass flow Qm (kg/h) under different pressure and density | |||||||
P=10.5 bar G | P=14 bar G | P=17.5 bar G | P=20 bar G | ||||||
ρ=5.89kg/m3 | ρ=7.6kg/m3 | ρ=9.32kg/m3 | ρ=10.54kg/m3 | ||||||
t=186.2°C | t=198.5°C | t=208.5°C | t=215.6°C | ||||||
min | max | min | max | min | max | min | max | ||
DN15 | 16 | 12.78 | 191.71 | 16.51 | 247.55 | 20.23 | 303.36 | 22.89 | 343.32 |
DN25 | 24 | 26.93 | 670.88 | 30.6 | 857.88 | 33.87 | 955.48 | 36.04 | 1201.41 |
DN40 | 38 | 67.51 | 1878.2 | 76.72 | 2150.7 | 84.93 | 2395.3 | 90.35 | 2557.7 |
DN50 | 50 | 116.89 | 3251.7 | 132.82 | 3723.4 | 147.03 | 4147 | 156.42 | 4428.1 |
DN80 | 74 | 256.03 | 7122.4 | 290.93 | 8155.8 | 322.06 | 9083.7 | 342.62 | 9699.3 |
DN100 | 97 | 439.91 | 12238 | 499.9 | 14013 | 553.38 | 15608 | 588.69 | 16666 |
DN150 | 146 | 996.62 | 27725 | 1132.5 | 31747 | 1253.7 | 35359 | 1333.7 | 37756 |
DN200 | 193 | 1872.1 | 52079 | 2127.3 | 59634 | 2354.9 | 66419 | 2505.2 | 70921 |
DN250 | 253 | 2992.7 | 83254 | 3400.71 | 95333 | 3764.6 | 106180 | 4004.9 | 113380 |
DN300 | 305 | 4346.5 | 120920 | 4939.1 | 138460 | 5467.5 | 154210 | 5816.5 | 164660 |
Selection list | ||||||||
model | Explanation | |||||||
ZZY30 | ||||||||
Connection | F | Flange connection | ||||||
W | Flange clamping | |||||||
Temperature Resistance Class |
T1 | Match with 250°c probe | ||||||
T2 | Match with 350°c probe | |||||||
Nominal diameter |
015 | DN15 | ||||||
020 | DN20 | |||||||
025 | DN25 | |||||||
032 | DN32 | |||||||
040 | DN40 | |||||||
050 | DN50 | |||||||
065 | DN65 | |||||||
080 | DN80 | |||||||
100 | DN100 | |||||||
125 | DN125 | |||||||
150 | DN150 | |||||||
200 | DN200 | |||||||
250 | DN250 | |||||||
300 | DN300 | |||||||
Structure |
Z | Integrated T and P compensation | ||||||
F | Regular model | |||||||
S | Split | |||||||
Material | R1 | 304 | ||||||
RL | 316L | |||||||
Instrument model |
N | 24V power supply Output 3 wire pulse | ||||||
V1 | 24V power, on-site display, 4-20mA, RS485, Impulse output | |||||||
V1 B |
24V +battery power supply, on-site display, 4-20 mA, RS485, pulse output | |||||||
Pressure Class | N | Normal | ||||||
H | High pressure |
PACKING & SHIPPING
We prioritize prompt delivery of your ordered products, ensuring they reach you at the earliest date as per your requirements.Installation Requirements
Piping condition
The installation of the vortex flowmeter requires specific straight pipe sections before and after the sensor to ensure accuracy. The common recommendations are as follows (D represents the pipe diameter):
Piping condition | upstream | Downstream |
Concentric shrinkage pipe full open gate valve |
15D | 5D |
∠90° square elbow | 20D | 5D |
Same plane 2∠90°elbow | 25D | 5D |
Semi-open gate valve regulating valve | 50D | 5D |
Different plane 2∠90°elbow | 40D | 5D |
With rectifier tube bundle | 12D | 5D |
1.
Install the sensor on a pipe that is horizontal, vertical, or inclined (with the liquid flowing from bottom to top) and matches the sensor's diameter. Ensure a straight pipe section of 15-20D upstream and 5-10D downstream of the sensor.
2.
Ensure that the pipe near the liquid sensor is fully filled with the liquid being measured.
3.
Avoid installing the sensor on pipes with strong mechanical vibrations to maintain measurement stability.
4.
Maintain consistency in the inner diameter of the straight pipe section and the sensor. If matching is not possible, use a slightly larger diameter pipe with an error margin of ≤3% and not exceeding 5mm. Do not install the sensor in areas with strong electromagnetic interference, restricted space, or where maintenance is inconvenient..
5.
Horizontal pipeline installation is the most common. When measuring gas flow containing a small amount of liquid, install the sensor at a higher point in the pipeline. For liquid flow containing a small amount of gas, install the sensor at a lower point.
6.
Vertical pipeline sensor installation: For gas flow measurement, install on a vertical pipeline with no flow direction restrictions. If gas contains a small amount of liquid, the flow should be from bottom to top. For liquid flow, ensure the flow is from bottom to top to avoid additional weight on the probe.
7.
Side installation on horizontal pipelines is suitable for measuring superheated steam, saturated steam, and low-temperature liquids. It is preferred when conditions allow, as it reduces temperature impact on the amplifier.
8.
Inverted installation on horizontal pipelines is generally not recommended. It is unsuitable for general gases or superheated steam but can be used for saturated steam and high-temperature liquids or in situations requiring frequent pipeline cleaning.
9.
For pipelines with insulation layers, particularly when measuring high-temperature steam, ensure the insulation layer does not exceed one-third of the bracket height.
10.
Selecting pressure and temperature measurement points: For precise results, position the pressure measurement point 3-5D downstream and the temperature measurement point 6-8D downstream of the sensor.